
Dynamic Programming 



Dynamic Programming 

• Dynamic Programming  is  a general algorithm design technique  
• for solving problems defined by or formulated as recurrences with 

overlapping subinstances 
 

•   Invented by American mathematician Richard Bellman in the  
1950s to solve optimization problems and later assimilated by CS 
 

•   “Programming” here means “planning” 
 

•   Main idea: 
- set up a recurrence relating a solution to a larger instance  to solutions of some 

smaller instances 
• -  solve smaller instances once 
- record solutions in a table  
- extract solution to the initial instance from that table 

 
 



Example: Fibonacci numbers  (cont.)   

Computing the nth Fibonacci number using bottom-up iteration and recording 
results: 

 
  F(0) = 0 
  F(1) = 1  
  F(2) = 1+0 = 1 
  …     
  F(n-2) =  
  F(n-1) =  
  F(n) = F(n-1) + F(n-2) 
 
 
 
   
 
 Efficiency: 
        - time 
        - space 
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What if we solve it 
recursively? 



Examples of DP algorithms 

•  Computing a binomial coefficient 
 

•  Longest common subsequence 
 

•  Warshall’s algorithm for transitive closure 
 

•  Floyd’s algorithm for all-pairs shortest paths 

 
•  Constructing an optimal binary search tree 

 
•  Some instances of difficult discrete optimization problems: 

 - traveling salesman 
 - knapsack 

 



Optimal Binary Search Trees 

Problem: Given n keys a1 < …< an and probabilities p1, …,  pn 

                         searching for them, find a BST with a minimum 
                 average number of comparisons in successful search. 

Since total number of BSTs with n nodes is given by C(2n,n)/(n+1), which grows 
exponentially, brute force is hopeless.  

Example: What is an optimal BST for keys A, B, C, and D with 
                  search probabilities 0.1, 0.2, 0.4, and 0.3, respectively? 
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Average # of comparisons        = 1*0.4 + 
2*(0.2+0.3) + 3*0.1 = 1.7  



DP for Optimal BST Problem 

Let C[i,j] be minimum average number of comparisons made in T[i,j], optimal BST for keys 
ai < …< aj , where 1 ≤  i ≤  j ≤ n. Consider optimal BST among all BSTs with some ak  (i ≤  k ≤  
j ) as their root; T[i,j] is the best among them.   
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C[i,j] = 

 min  {pk · 1 + 

  

           ∑ ps (level as in T[i,k-1] +1) + 

 

           ∑ ps (level as in T[k+1,j] +1)} 
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DP for Optimal BST Problem (cont.) 
After simplifications, we obtain the recurrence for C[i,j]: 

C[i,j] =   min {C[i,k-1] + C[k+1,j]} + ∑ ps   for 1 ≤  i ≤  j ≤ n 

C[i,i] = pi    for 1 ≤  i ≤  j ≤ n 
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i ≤ k ≤ j 



Example:   key                  A     B     C     D 

                    probability   0.1   0.2   0.4  0.3 

 
  
            
 
            
 

The tables below are filled diagonal by diagonal: the left one is filled using the recurrence  
                    C[i,j] =  min {C[i,k-1] + C[k+1,j]} + ∑ ps ,    C[i,i] = pi ; 

 
the right one, for trees’ roots, records k’s values giving the minima  

  0  1  2  3  4 

1   0 .1 .4 1.1 1.7 

2  0 .2  .8 1.4 

3  0  .4 1.0 

4  0  .3 

5  0 

 0  1  2  3  4 

1  1  2  3  3 

2  2  3  3 

3  3  3 

4  4 

5 

i ≤ k ≤ j s = i 

j 

optimal BST 

B 

A 

C 

D 

i  
j 

i  
j 



Optimal Binary Search Trees 



Analysis DP for Optimal BST Problem 

Time efficiency:  Θ(n3) but can be reduced to Θ(n2) by taking 
                              advantage of monotonicity of entries in the 
                              root table, i.e., R[i,j] is always in the range  
                              between R[i,j-1] and R[i+1,j] 

Space efficiency: Θ(n2) 

 

Method can be expanded to include unsuccessful searches 

  

 

  

            

 

            

 



Application of dynamic programming 

• Longest common subsequence problem 

• Checker board 

• Bio-informatics 

• Matrix chain multiplication 

 

 



Scope of research 

• Linear search problem 

 



Assignment 

• Q.1)Differentiate Dynamic Programming with 
Divide and conquer method. 

• Q.2)Compare Dynamic Programming with 
Greedy Method. 

• Q.3) State the advantages of OBST over BST 
with example. 


